相交圆聚光腔的聚光效率

干 小

(中国光学学会咨询部)

On the collecting efficiency of intersecting cylindrical cavity

Wang Shaochuan

(Consulting Department, The Chinese Optical Society, Beijing)

Abstract: The analytical expression for calculating efficiency of laser cavity based on its definition is given considering the sizes of the pumping source and its image. Collecting efficiency of intersecting cylindrical cavity is particularly calculated by microcomputer.

在激光器件中,提高聚光腔的聚光效率是提高 整个固体激光器效率的重要环节之一。由于实验条 件和加工装配的不同,由于脉冲输出的不稳定,使得 对各种不同腔型和同种腔型但参数不同的腔进行实 验比较带来一些困难。所以,在理论上探讨各种聚 光腔的聚光效率的解析表达式是十分必要的。

聚光腔的聚光效率一般定义为辐射到激光棒上 的能量与灯辐射的总能量之比。对镜面反射腔,灯 辐射的光经腔壁反射后成一个放大或缩小的实象, 该象的一部分或全部照在棒上,或因成象位置的关 系也可能全都不落在棒上。

如果只把光源看成线光源,不考虑光源的大小 及其成象关系来求效率是不妥的。因为如把灯和棒 分别放在椭圆腔的两焦线上,当把光源看成线光源 时,椭圆腔的聚光效率就会是1。但实际上即使反 射率是100%考虑了灯和棒的大小及灯的成象关 系,计算出随腔偏心率和灯与棒的直径不同,其效率 也只在60~80%之间。

设灯辐射的光经腔壁上某点处反射后成的象在 棒的位置处的大小为 *S*_i, 该象与棒重合部分的大小 为 *S*_r, 则灯辐射的光经腔壁上这一点 反 射 后 只 有 *S*_i, 部分照在棒上。又因为灯辐射的光在灯的径向 是均匀分布的,所以聚光效率 η 的一般表达式为

 $\eta = \frac{1}{\pi} \int_0^\pi \frac{S_r}{S_i} d\alpha$

设灯的截面是半径为 r1 的圆,其方程为

 $(x-a)^2+y^2=r_1^2$

相交圆腔的截面是半径为 r2 的部分圆, 其上半部分的方程为:

 $x^{2}+(y+b)^{2}=r_{2}^{2}$, $(-\sqrt{r_{2}^{2}-b^{2}} \le x \le \sqrt{r_{2}^{2}-b^{2}})$ 设 $P(x_{p}, y_{p})$ 是腔壁上任一点, 过 P 点作灯 圆周的 切线, 切点分别为 $T_{1}(x_{0}, y_{0})$ 、 $T_{2}(x'_{0}, y'_{0})$ 。可解得两

切点为:

$$\begin{cases} x_{0} = \frac{r_{1}^{2} - y_{0}y_{p}}{x_{p} - a} + a \\ y_{0} = \frac{r_{1}^{2}y_{p} + \sqrt{\frac{r_{1}^{4}y_{p}^{2} - (x_{p}^{2} + y_{p}^{2} - 2ax_{p} + a^{2})}{\times [r_{1}^{4} - (x_{p} - a)^{2}r_{1}^{2}]}}, \\ x_{0}^{\prime} = \frac{r_{1}^{2} - y_{0}^{\prime}y_{p}}{x_{p} - a} + a \\ y_{0}^{\prime} = \frac{r_{1}^{2} - y_{0}^{\prime}y_{p}}{r_{1}^{2}y_{p} - \sqrt{\frac{r_{1}^{4}y_{p}^{2} - (x_{p}^{2} + y_{p}^{2} - 2ax_{p} + a^{2})}{\times [r_{1}^{4} - (x_{p} - a)^{2}r_{1}^{2}]}}, \end{cases}$$

两条入射光线为 $A_1 = (x_p - x_0, y_p - y_0), A_2 = (x_p - x'_0, y_p - y'_0)$ 。相应的两条反射光线为:

$$A'_{1} = \left(x_{p} - x_{0} - 2M_{1} \frac{x_{p}}{r_{2}}, y_{p} - y_{0} - 2M_{1} \frac{y_{p} + b}{r_{2}} \right),$$

the

 $M_{1} = \frac{x_{p}}{r_{2}} (x_{p} - x_{0}) + \frac{y_{p} + b}{r_{2}} (y_{p} - y_{0})$ $A'_{2} = \left(x_{p} - x'_{0} - 2M_{2} \frac{x_{p}}{r_{2}}, y_{p} - y'_{0} - 2M_{2} \frac{y_{p} + b}{r_{2}}\right)$

式中, $M_2 = \frac{x_p}{r_2} (x_p - x'_0) + \frac{y_p + b}{r_2} (y_p - y'_0)$

类似地,可求得两反射光线的角平分线。 过棒 中心 *A*(-*a*, 0)作该角平分线的垂线,其方程 为:

$$y = \frac{2M_{3}x_{p}/r_{2} - x_{p} + a}{y_{p} - 2M_{3}(y_{p} + b)/r_{2}} (x + a)$$
$$M_{3} = \frac{x_{p}}{y_{p}} (x_{p} - a) + \frac{y_{p}}{y_{p}} (y_{p} + b)$$

设棒的直径为 r₃,圆心在(-a,0)。可解得该 垂线与棒圆周的两交点 V₁(x₁, y₁)、V₂(x₂, y₂):

$$\begin{cases} x_1 = \frac{r_3[y_p - 2M_3(y_p + b)/r_2]}{\sqrt{\frac{(2M_3x_p/r_2 - x_p + a)^2}{+[y_p - 2M_3(y_p + b)/r_2]^2}}} - a \\ y_1 = \frac{r_3(2M_3x_p/r_3 - x_p + a)}{\sqrt{\frac{(2M_3x_p/r_3 - x_p + a)^2}{+[y_p - 2M_3(y_p + b)/r_2]^2}}}, \\ x_2 = -x_1 - 2a \\ y_2 = -y_1 \end{cases}$$

该垂线与反射光的两交点 V₃(x₃, y₃)、V₄(x₃, y₄) 为:

$$\begin{cases} \frac{y_p - 2M_1(y_p + b)/r_2 - y_0}{x_p - 2M_1x_p/r_2 - x_0} \cdot x_p \\ + \frac{2M_3x_p/r_2 - x_p + a}{y_p - 2M_3(y_p + b)/r_2} \cdot a - y_p \\ \frac{y_p - 2M_3(y_p + b)/r_2}{x_p - 2M_1x_p/r_2 - x_0} \\ - \frac{2M_3x_p/r_2 - x_p + a}{y_p - 2M_3(y_p + b)/r_2} \\ y_3 = \frac{2M_3x_p/r_2 - x_p + a}{y_p - 2M_3(y_p + b)/r_2} (x_3 + a) \end{cases}$$

$$\begin{cases} x_4 = \frac{\frac{y_p - 2M_2(y_p + b)/r_2 - y'_0}{x_p - 2M_2 x_p/r_2 - x'_0} x_p}{\frac{2M_3 x_p/r_2 - x_p + a}{y_p - 2M_3 (y_p + b)/r_2} \cdot a - y_p} \\ \begin{cases} x_4 = \frac{\frac{2M_3 x_p/r_2 - x_p + a}{y_p - 2M_1 x_p/r_2 - x'_0}}{\frac{x_p - 2M_1 x_p/r_2 - x_p + a}{y_p - 2M_3 (y_p + b)/r_2}} \\ \\ y_4 = \frac{2M_3 x_p/r_2 - x_p + a}{y_p - 2M_3 (y_p + b)/r_2} \cdot (x_4 + a)_0 \end{cases} \end{cases}$$

设 $|V_iV_j| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}, i \neq j, i = 1, 2, 3, j = 2, 3, 4, 可得.$

$$F(\alpha, \alpha) =$$

 $|V_1V_2| \cong x_3 > x_1 > x_2 > x_4, \ \text{if } x_4 > x_1 > x_2 > x_3,$ $\overline{V_{3}V_{4}}'$, $x_{3}>x_{2}>x_{1}>x_{4}$, $x_{4}>x_{2}>x_{1}>x_{3}$; $|V_1V_3|$ -, 当 $x_4 > x_1 > x_3 > x_2$, 或 $x_2 > x_3 > x_1 > x_4$; V3V4 V_1V_4 当 $x_3 > x_1 > x_4 > x_2$, 或 $x_2 > x_4 > x_1 > x_3$; V aVA $|V_2V_3|$ $|V_3V_4|$ 当 $x_1 > x_3 > x_2 > x_4$, 或 $x_4 > x_2 > x_3 > x_1$; $\frac{|V_2V_4|}{|V_3V_4|},$ 当 $x_1 > x_4 > x_2 > x_3$, 或 $x_3 > x_2 > x_4 > x_1$; 当 $x_1 > x_3 > x_4 > x_2$, 或 $x_1 > x_4 > x_3 > x_2$, 1, 或 $x_2 > x_3 > x_4 > x_1$, 或 $x_2 > x_4 > x_3 > x_1$: 10. 当 $x_4 > x_3 > x_1 > x_2$, 或 $x_2 > x_1 > x_3 > x_4$, 或 $x_3 > x_4 > x_1 > x_2$, 或 $x_2 > x_1 > x_4 > x_3$. 或 $x_1 > x_2 > x_3 > x_4$, 或 $x_4 > x_3 > x_2 > x_1$, 或 $x_1 > x_2 > x_4 > x_3$, 或 $x_3 > x_4 > x_2 > x_{10}$

$F(x_p, y_p)$ 表示 $\frac{S_r}{S_r}$ 的各种情况下的值。

把被积函数自变量由角度 a 化为 P 点的直角 坐标 x_p, 可得

$$d\alpha = \frac{|(x_p - a)x_p + (y_p + b)y_p|}{[(x_p - a)^2 + y_p^2](y_p + b)} dx_p,$$

中 $y_p = \sqrt{r_2^2 - x^2} - b$
不影响计算精度,设
 $c = -\frac{\sqrt{4a^2 - r_3^2}}{r_3},$

可取 $x_L = \frac{c}{1 + c^2}$

× $(\sqrt{2abc+r_2^2c^2+r_2^2-b^2c^2-a^2}-b-ac)+a$ 为直射部分和反射部分的分界点的横轴坐标。

设
$$c_2 = \frac{1}{r_1} \sqrt{4a^2 - r_1^2}$$

可取
 $x_R = \frac{c_2}{1 + c_2^2}$
 $\times (\sqrt{c_2^2 r_2^2 + r_2^2 - 2abc_2 - b^2 c_2^2 - a^2} + ac_2 - b) - a,$

•746 •

Ξ

式中

为反射部分和吸收部分的分界点的横轴坐标。我们 最终可得到聚光效率 η 的解析表达式为:

$$\eta = \frac{1}{\pi} \int_{-\sqrt{r_z^2 - b^2}}^{x_L} \frac{|(x-a)x + (y+b)y|}{\lfloor (x-a)^2 + y^2 \rfloor (y+b)} dx + \frac{\rho}{\pi} \int_{x_L}^{x_R} F(x, y) \frac{|(x-a)x + (y+b)y|}{\lfloor (x-a)^2 + y^2 \rfloor (y+b)} dx$$

式中 $y = \sqrt{r_2^2 - x^2} - b$, ρ 是腔壁的反射系数。

在 CROMEMCO 微计算机上计算的部 分 结果 如表 1。

上。 以上计算都只是考虑一次反射的情况。当 a 和 **b**很小时主要是一次反射,多次反射可忽略。其它 情况因有多次反射,实际值比计算值要稍大一些。

我们做了部分实验。实验结果的变化趋势与计 算结果是一致的。

一般说来, α和 b 较小时聚光效率较高, 但有时 α较大时η还有一个峰值; 棒的直径较大时效率较 高; 灯的直径较小时效率较高。

贾循德高级工程师、赵达尊副教授等人审阅了 本文,在此表示感谢。

(1986年11月27日收稿)

 ± 1 $r_3=3$, $\rho=0.9$ ± 1 $r_3=1$

1

	ali mi	~ \ -	. Shang	A.	euriqal E	it a sto	ina Austi	(East of	古公式	1. 年. 和	主意中、
r_2	Ъ	//	5	6	7	8	9	10	11	12	14
0.94	TRACES	r1	Innin	NRE HUVE IN		的准备	month	eniton-T	N. Rive	V.bstrag	
	confrers	1.5	0.71	0.69	0,65	0.58	0.60	0.63	0.33	w evad	dyes
		3	0.69	0.64	0.54	0.46	0.47	0 44	då od eeo	ney is el	eiofte /
14 吸收峰 站在这	3 计最优	1.5	0.70	0.55	0.66	0.44	0.54	0.47	0.45	metry	
		L mal/IgJs和 J	0.60	0.60	0.55	0 50	0.41	0.35			
	111216 ct	1.5	0.52	0.64	0.47	0,39	0.37	0.39	0.34		
TA # 3	有关。200	山现 一个 吸山	0.50	0.50	0.46	0.46	0.43	0.25	都是指科	化流科学	派一组
· AN Na	得有可能	1.5	0.78	0.66	0.69	0.60	0.65	0.75	0.69	0.36	27-1-227
	「質化物	3	0.72	0.70	0.60	0.52	0.46	0.50	0.47	0.22	的活动
1990 方 6 16 月 平 引 余 出 合 (6) () () () () ()	m (1301-) (43101(-)-(1	1.5	0.76	0.64	0.60	0.63	0.45	0.61	0.67	0.30	杂档 .更足
			0.60	0.66	0.61	0.55	0.47	0.45	0.33	0.31	with the
	中 8 函 6) 中 8 百 百 百 百 百 百 百 百 百 百 百 百 百 百 百 百 百 百 百	S 1.5	0.50	0.53	0.68	0.48	0.41	0.40	0.43	0.26	Meri F
		3 3 3	0.49	0.51	0.50	0.50	0.43	0.42	0.32	0.27	「「「「「「「」」を見ていた。」
其一件		1.5	0.80	0.72	0.74	0.63	0.64	0.62	0.73	0.42	0.37
		3	0.72	0.71	0.65	0.58	0.50	0.47	0.53	0.45	0.22
18	3	1.5	0.82	0.75	0.64	0.57	0.50	0.48	0.52	0.54	0.26
		3	0.60	0.63	0 67	0 61	0.54	0.46	0.46	0.37	0.27
的小小小	5	1.5	0.50	0 50	0.68	0.66	0.49	0.43	0.44	0.47	0.15
		3	0.48	0.50	0.53	0.55	0.52	0.45	0.46	0.30	0.29
20 41 1 41 4	1,000	1.5	0.82	0.82	0.70	0 66	0.65	0.71	0.59	0.52	0.42
		00 3 004	0.74	0.74	0.70	0.62	0.56	0.50	0.48	0.54	0.27
	3	1.5	0 85	0.77	0.71	0 62	0.70	0.50	0.51	0.62	0.37
		3	0.61	0.62	0.71	0.67	0.62	0.52	0 46	0.41	0.36
	5	1.5	0.51	0.51	0.50	0.64	0.71	0 68	0 45	0.47	0.24
		3	0.49	0.47	0.51	0 54	0.57	0.55	0.46	0.41	0.36

.747 .